The catalogue contains study descriptions in various languages. The system searches with your search terms from study descriptions available in the language you have selected. The catalogue does not have ‘All languages’ option as due to linguistic differences this would give incomplete results. See the User Guide for more detailed information.
TweetsCOV19 - A Semantically Annotated Corpus of Tweets About the COVID-19 Pandemic (Part 4, January 2021 - August 2022)
Creator
Dimitrov, Dimitar ( GESIS - Leibniz-Institut für Sozialwissenschaften)
Baran, Erdal ( GESIS - Leibniz-Institut für Sozialwissenschaften)
Fafalios, Pavlos ( Institute of Computer Science, FORTH-ICS, Heraklion, Greece)
Yu, Ran ( GESIS - Leibniz-Institut für Sozialwissenschaften)
Zhu, Xiaofei ( Chongqing University of Technology, Chongqing, China)
Zloch, Matthäus ( GESIS - Leibniz-Institut für Sozialwissenschaften)
Dietze, Stefan ( GESIS - Leibniz-Institut für Sozialwissenschaften & Heinrich-Heine-University Düsseldorf, Germany & L3S Research Center, Hannover, Germany)
Study number / PID
10.7802/2470 (GESIS)
10.7802/2470 (DOI)
Data access
Informationen nicht verfügbar
Series
Nicht verfügbar
Abstract
TweetsCOV19 is a semantically annotated corpus of Tweets about the COVID-19 pandemic. It is a subset of TweetsKB and aims at capturing online discourse about various aspects of the pandemic and its societal impact. Metadata information about the tweets as well as extracted entities, sentiments, hashtags, user mentions, and resolved URLs are exposed in RDF using established RDF/S vocabularies (for the sake of privacy, we anonymize user IDs and we do not provide the text of the tweets). More information are available through TweetsCOV19's home page: https://data.gesis.org/tweetscov19/.
We also provide a tab-separated values (tsv) version of the dataset. Each line contains features of a tweet instance. Features are separated by tab character ("\t"). The following list indicate the feature indices:
1. Tweet Id: Long.
2. Username: String. Encrypted for privacy issues.
3. Timestamp: Format ( "EEE MMM dd HH:mm:ss Z yyyy" ).
4. #Followers: Integer.
5. #Friends: Integer.
6. #Retweets: Integer.
7. #Favorites: Integer.
8. Entities: String. For each entity, we aggregated the original text, the annotated entity and the produced score from FEL library. Each entity is separated from another entity by char ";". Also, each entity is separated by char ":" in order to store "original_text:annotated_entity:score;". If FEL did not find any entities, we have stored "null;".
9. Sentiment: String. SentiStrength produces a score for positive (1 to 5) and negative (-1 to -5) sentiment. We splitted these two numbers by whitespace char " ". Positive sentiment was stored first and then negative sentiment (i.e. "2 -1").
10. Mentions: String. If the tweet contains mentions, we remove the char "@" and concatenate the mentions with whitespace char " ". If no mentions appear, we have stored "null;".
11. Hashtags: String. If the tweet contains hashtags, we remove the char "#" and concatenate the hashtags with whitespace char " ". If no hashtags appear, we have stored "null;".
12....
Terminology used is generally based on DDI controlled vocabularies: Time Method, Analysis Unit, Sampling Procedure and Mode of Collection, available at CESSDA Vocabulary Service.
Methodology
Data collection period
01/01/2021 - 01/08/2022
Country
Time dimension
Nicht verfügbar
Analysis unit
Nicht verfügbar
Universe
Nicht verfügbar
Sampling procedure
Nicht verfügbar
Kind of data
Nicht verfügbar
Data collection mode
Web Scraping
Access
Publisher
GESIS Datenarchiv für Sozialwissenschaften
Publication year
2022
Terms of data access
Freier Zugang (ohne Registrierung) - Die Forschungsdaten können von jedem direkt heruntergeladen werden.
Data can only be used for non-commercial research