Summary information

Study title

Function Random Start Values for CFA (lavaan)

Creator

Urban, Julian ( GESIS; Trier University)
Bluemke, Matthias ( GESIS)

Study number / PID

10.7802/2712 (GESIS)

10.7802/2712 (DOI)

Data access

Informationen nicht verfügbar

Series

Nicht verfügbar

Abstract

Confirmatory factor analysis (CFA) is a widely applied statistical technique in many research areas. However, depending on identification method and starting values, with typical (or robust) maximum likelihood estimation (ML/MLR) analysis models may converge to suboptimal values of the likelihood function (local maxima), thereby threatening the robustness of empirical modelling and inferences about model selection. To ensure model convergence to optimal likelihood values (global maxima), Mplus offers a convenience switch to repeatedly run a model with different random start values. Notably, open-source solutions in R lack a similarly convenient way for overcoming local maxima with the help of random start values. Here, we propose to implement R-code for reproducibe findings of the computationally optimal values for a CFA solution. While drawing on lavaan’s cfa-function (Rosseel, 2012), we use a wrapper function for calling lavaan’s cfa-function with three additional arguments. The first argument specifies the number of model runs that shall test random start values, mirroring Mplus’s “starts” option. The second argument specifies the numerical tolerance, that is, the number of decimals of the likelihood values for evaluating the runs with random start value as equally likely. The third argument can be used to invoke parallel computing in the presence of multiple CPU cores, which increases computational efficiency if large numbers of runs with different random start values were ever required. Several examples demonstrate the functionality, applicability, and utility of the function. Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02

Topics

Nicht verfügbar

Methodology

Data collection period

Nicht verfügbar

Country

Time dimension

Nicht verfügbar

Analysis unit

Nicht verfügbar

Universe

Nicht verfügbar

Sampling procedure

Nicht verfügbar

Kind of data

Nicht verfügbar

Data collection mode

Nicht verfügbar

Access

Publisher

GESIS Datenarchiv für Sozialwissenschaften

Publication year

2024

Terms of data access

Freier Zugang (ohne Registrierung) - Die Forschungsdaten können von jedem direkt heruntergeladen werden. CC BY 4.0: Attribution (https://creativecommons.org/licenses/by/4.0/deed.de)

Related publications

Nicht verfügbar